## MATH 33A Worksheet Week 7

TA: Emil Geisler and Caleb Partin

May 13, 2024

**Exercise 1.** Determine whether the following sets of vectors are *orthonormal* (orthogonal and unit length):

(a)  $\begin{bmatrix} 3/5\\4/5 \end{bmatrix}$ ,  $\begin{bmatrix} -4/5\\3/5 \end{bmatrix}$ . (b)  $\begin{bmatrix} 1\\-1 \end{bmatrix}$ ,  $\begin{bmatrix} 1\\1 \end{bmatrix}$ . (c)  $\begin{bmatrix} 2/3\\-1/3\\2/3 \end{bmatrix}$ ,  $\begin{bmatrix} -1/3\\2/3\\2/3 \end{bmatrix}$ ,  $\begin{bmatrix} 2/3\\2/3\\-1/3 \end{bmatrix}$ (d)  $\begin{bmatrix} a\\a \end{bmatrix}$ ,  $\begin{bmatrix} a\\-b \end{bmatrix}$ ,  $\begin{bmatrix} b\\a \end{bmatrix}$  for  $a, b \in \mathbb{R}$ . **Exercise 2.** Find a basis for  $W^{\perp}$ , where

$$W = \operatorname{span} \left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 5\\6\\7\\8 \end{bmatrix} \right\}$$

(Hint: How can we relate  $W^{\perp}$  to subspaces where we know how to find a basis?)



**Exercise 4.** For each of the following vectors  $\vec{v}$ , find the decomposition  $v^{||} + v^{\perp}$  with respect to the subspace

$$V = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix} \right\}$$



**Exercise 5.** Let  $V = \text{span}\{\vec{v_1}, \ldots, \vec{v_k}\}$  be a subspace of  $\mathbb{R}^n$  where the vectors  $\vec{v_1}, \ldots, \vec{v_k}$  give an orthonormal basis for V.

- (a) If  $\vec{w} \in V$ , show that  $\operatorname{proj}_V(\vec{w}) = \vec{w}$ .
- (b) If  $\vec{w} \in V^{\perp}$ , show that  $\operatorname{proj}_{V^{\perp}}(\vec{w}) = 0$ .